Pengelasan Sebutan Huruf Hijaiyah menggunakan Teknik Pembelajaran Mesin (Classification of Hijaiyah Letters Pronunciation using Machine Learning Techniques)

نویسندگان

چکیده

Fitur Mel-frequency cepstral coefficients (MFCC) dan teknik pengelasan berdasarkan pembelajaran mesin sering digunakan dalam mengelaskan sebutan huruf-huruf hijaiyah. Walaupun begitu, kajian-kajian lepas, prestasi ketepatan huruf hijaiyah masih lagi rendah walaupun dengan penggunaan algoritma fitur MFCC. Oleh itu, kajian khas untuk menganalisis yang sesuai akan dibincangkan kertas ini. Selain bilangan juga ditingkatkan kepada 30 mengikut resam uthmani. Kajian ini mahu membuktikan bahawa mampu memberikan tinggi jumlah banyak. dilakukan enam fasa utama metodologi termasuklah pemprosesan isyarat, penyarian fitur, pemilihan akhir sekali pengujian, penilaian analisis. Kadar persampelan bagi kesemua modul isyarat pertuturan adalah 44.1 kHz. Dapatan menunjukkan MFCC merupakan paling berbanding fitur-fitur lain telah diekstrak ‘rank’ hasil fitur. Perbandingan Random Forest (RF) mencapai menggunakan MFCC, iaitu purata sebanyak 97~99% setiap diuji Kesimpulannya, RF sekaligus meningkatkan sehingga 98.29% secara huruf. Kata kunci: Sebutan hijaiyah; Pengelasan pertuturan; MFCC; Pembelajaran mesin; Pengecaman ABSTRACT features and classification techniques based on machine learning are often used in classifying letter pronunciations, however, the accuracy performance of pronunciations is still low even with use algorithms features. Therefore, this study to analyze relevant will be presented paper. In addition, number letters was also increased following Uthmani resm. This research aims prove that suitable feature technique allows for precise pronunciation each large amounts letters. conducted six main stages methodologies which includes signal processing, searching, processing selection, lastly, testing, evaluation analysis. The sampling rate all speech modules findings show most classify hijayah compared other have been extracted rank selection results. Comparison shows achieves high by using feature, an average 97 ~ 99% tested study. conclusion, able provide a accuracy, Keywords: Hijaiyah pronunciation; Speech classification; Machine learning; recognition

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aplikasi belajar membaca iqro' berbasis mobile

Abstrak Kemajuan Ilmu Pengetahuan dan Teknologi (IPTEK) hendaklah diikuti dengan Iman dan Takwa (IMTAK), sangat disayangkan, jika masih banyak masyarakat yang belum bisa membaca huruf hijaiyah yang merupakan dasar dari Al-Qur’an. Masyarakat sekarang telah disibukkan dengan berbagai aktipitas sehingga mereka sulit untuk belajar dengan Ustad atau Ustadza mengenai huruf hijaiyah. Untuk mengatasi m...

متن کامل

Text Classification Using Machine Learning Techniques

Automated text classification has been considered as a vital method to manage and process a vast amount of documents in digital forms that are widespread and continuously increasing. In general, text classification plays an important role in information extraction and summarization, text retrieval, and questionanswering. This paper illustrates the text classification process using machine learn...

متن کامل

Music Genre Classification Using Machine Learning Techniques

Music is categorized into subjective categories called genres. Humans have been the primary tool in attributing genre-tags to songs. Using a machine to automate this classification process is a more complex task. Machine learning excels at deciphering patterns from complex data. We aimed to apply machine learning to the task of music genre tagging using eight summary features about each song, a...

متن کامل

Music Genre Classification using Machine Learning Techniques

Categorizing music files according to their genre is a challenging task in the area of music information retrieval (MIR). In this study, we compare the performance of two classes of models. The first is a deep learning approach wherein a CNN model is trained end-to-end, to predict the genre label of an audio signal, solely using its spectrogram. The second approach utilizes hand-crafted feature...

متن کامل

Penerapan teknik web scraping pada mesin pencari artikel ilmiah

Search engines are a combination of hardware and computer software supplied by a particular company through the website which has been determined. Search engines collect information from the web through bots or web crawlers that crawls the web periodically. The process of retrieval of information from existing websites is called "web scraping." Web scraping is a technique of extracting informat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: GEMA Online Journal of Language Studies

سال: 2023

ISSN: ['2550-2131', '1675-8021']

DOI: https://doi.org/10.17576/gema-2023-2301-15